Chairman Emeritus Reconnect 46 “Value Orientation to Power / Energy Sector”

My dear friends,

Life on earth has been created on so many exacting conditions.
1. The earth rotates on its axis at one thousand miles an hour. If it turned at one hundred miles an hour, our days and nights, would be ten times as long as now, and the hot sun would then burn up our vegetation during each long day while in the long night any surviving sprout would freeze.
2. The slant of the earth, tilted at an angle of 23 degrees, gives us our seasons. If it had not been so tilted, vapors from the ocean would move north and south, piling up for us continents of ice.
3. The sun, the source of our life, has a surface temperature of 12,000o F and our earth is just far enough away so that this “eternal fire” warms us just enough and not too much. If the sun gave off only one half its present radiation, we would freeze, and if it gave half as much more, we would roast.
4. If our moon was, say, only 50 thousand miles away instead of its actual distance, our tides would be so enormous that twice a day all continents would be submerged.
5. Had the ocean been a few feet deeper, carbon di oxide and oxygen would have been absorbed and no vegetable life could exist.
6. Ozone layer protects the earth from ultraviolet rays of the sun and a well-designed greenhouse enveloping the earth maintains the right kind of warmth for living beings to survive.
The above exacting conditions necessary for life on earth could not possibly exist in proper relationship by chance. There is not one chance in millions that life on our planet is an accident. In fact, it appears to be a deliberately designed system to perfect equilibrium.

Sustainability of Human Intervention in Nature’s Equilibrium
Mahatma Gandhi said “There is enough in nature for everyone’s need but not enough for everyone’s greed”. With the evolution of human beings and their multiplying population together with their intelligence and aspirations to command the nature, the question arises as to how much intervention is possible in the universe, in such an exacting relationship as described above. For instance,
1. How much we can intercept locally the nature’s hydrological cycle for irrigation and power, with repercussions on local environment, even though carbon-free.
2. How much fossil fuel we can burn for power generation and other needs since it has a very serious repercussion on emissions of carbon di-oxide which according to an estimate, if not brought down to 60% of the current level, may cause major climatic shifts and submergence of low lying lands by 2050.
3. How much we can afford emission of Chlorofluorocarbons (CFC) which have already started disrupting the ozone layer which may cause skin cancer, blindness etc. The seasonal hole in the ozone layer during Sept’1998 covered an area of 25 million KM2 (about 2.5 times the area of Europe). According to one estimate 60% of GHG is attributed to energy Sector.
4. How much technological development we can afford so as not to disrupt the nature’s supportive equilibrium. At what rate resource consumption and growth of population is possible keeping intact the regenerative and self-recycling characteristics of the nature besides carrying capacity and assimilative capacity of the Eco-systems.

Value Orientation
Human intervention needs value orientation in any sector of development. A 15-point charter of values is suggested below for power / energy sector.

1. Sense of Proportion: A respectable share of Hydro is a technical necessity of Power Grid. Present Hydro:Thermal mix of 20:80 should ideally shift to 40:60.
2. System Ethos: Voltage and frequency fluctuations causing heavy damage to power equipment and completely stalling the sensitive control equipment; speak poorly of power system ethos. Grid frequency is a critical aspect of power system operations and a function of demand and supply (when demand exceeds supply, frequency dips and vice versa). Grid frequency reflects the discipline and the stress in the system. The frequency variation for example should be brought down from 8% (48 Hz-52 Hz) at times to less than 1% (49.7 Hz-52.2 Hz) at all times. CERC now aims at 0.2%.
3. Techno-economic Sense: Techno-economically, Hydro proves several times favourable option compared to thermal keeping in view the life cycle cost, recurring fuel cost and its escalation, environmental cost and grid economy. Nuclear option exhausts our foreign currency reserves right from fuel (uranium) to technology.
4. Financial Acumen: Solar PV is the costliest option for a 50 MW scale, but it breaks even for a 50 kW plant and proves cheapest for an isolated 50 W system.
5. Sustainability: With the present rate of consumption, all oil and gas stocks would be completely exhausted in India before 2050. Fossil route cannot prime the growth which is sustainable.
6. Renewability: Ever renewed solar energy is radiating directly onto the earth, at the same time manifesting itself in several indirect forms such as wind, hydro, ocean thermal and bio-energy etc. This naturally recycled resource-base holds potential for perpetual power generation.
7. Energy Storage: Energy storage is complementary to intermittent renewables. With “Energy Storage” component, the load demand can be met much better, right from cyclic stability to daily demand pattern to even seasonal demands.
8. Environmental Compatibility: Environmental impacts net of mitigative measures place Hydro at 3 against 7 that of thermal on a 10-point scale. Carbon emissions of Hydro and Nuclear options are least compared to all other known options for power generation, considering the full energy chain. Their carbon emission compared to coal option is in the ratio of 5:270. Hydro:Thermal SO2 emission is in the ratio of 1:1000.
9. Interweaving of Technical and Commercial Values: Higher tariff for peaking power could be an attempt towards optimising technical and commercial values of power.
10. Security Concerns: Longevity of imported fossil fuels is extremely doubtful since globally the oil and gas stocks are going to exhaust fast with the rate of consumption growing with population and their aspirations. National energy security concerns call for indigenous and renewable options to be developed.
11. Optimizing Demand-Supply Gap: Present peaking power shortages in India could have been completely eliminated under the same MW installed (under the same investment) had the country gone for a judicious Hydro:Thermal mix. Demand side management and energy efficiency measures on utilization side can also narrow down the demand supply gap which at present is in the range of 2.1 % energy shortage and 2.6 % peaking shortage during 2015-16, in respect of present electricity connected consumers.                                   12. Smart Grid: A smart grid is an electrical grid which includes a variety of operational and energy measures including real time smart meters and other appliances, renewable energy resources, and energy efficiency measures. For instance, improvement of tail-end grid voltages can be achieved through Solar Panels. Computer intelligence & networking abilities and automation make it interactive right from generator to consumer. Optimization of energy use on real time basis with resultant economy and comfort are obvious benefits of smart grid which should soon be made available to all the electricity customers.
13. Decentralisation: It may be uneconomical to extend the grid to the remotest areas and therefore off-grid electrification with localised generation and distribution system viz. ‘mini-grid’ should be equally respected and encouraged. Stand-alone systems can also help in avoidance of transmittal of that much of power over long distance with attendant losses.
14. New Capacity Vs. Upgradation: Upgradation comprising renovation, retrofitting, uprating and modernisation is cheaper, faster and environmentally friendlier option for coping with the increasing demand than the new capacity addition and should therefore get priority in the power sector.
15. Conservation: We generate 4 units for ultimate utilization of just 1 unit of electricity, 25% being T&D losses and 66.7% being the end conversion losses in some crucial sectors like agricultural pump-sets. Energy efficiency measures should lead to conservation of precious energy resources.

Sustained Value Addition
R&D should expand to R&D3 meaning Research and “Development, Demonstration & Deployment”. Such a countenance would provide an orientation to take research activity right up to its logical end. R&D3 program would involve Research, Technology development, Engineering and Business Management strategies, all together with an integrated approach. India should see more and more innovations through the entire R&D3 chain in the 21st Century for maximization of indigenous value addition which would not only make the nation proud but would rapidly strengthen our economy.

Concluding Remarks
Rather poor “Techno-Economic-Environmental-Operational ethos” of our Power System calls for value orientation- a conscious introspection linking the present ills and shortcomings to the values and ethos and strategic envisioning of corrective measures. Values chartered above for producing a credible blue print of a formulated vision for India’s Electrical Power Sector can be of generic importance applicable to other sectors of development also, with due modifications.

Let us appreciate that value based introspection and corrective action planning are crucial for development.

Best wishes and Regards,

Dr. B.S.K.Naidu

BE(Hons), M.Tech., Ph.D., CBI-Scholar, D.Engg. (Calif.), FNAE, Hon.D.WRE (USA)
Chairman Emeritus, Great Lakes, Gurgaon, NCR, New Delhi, INDIA
Former Director General (NPTI & CPRI / REL), Ex. Director (REC) / Executive Director (IREDA)

No job is small or big, the way in which you do, makes it small or big (c)

Chairman Emeritus Reconnect 44 – “Energy Storage for Intermittent Renewables”

My dear friends,

Our Hon’ble Prime Minister Shri Narendra Modi has been announcing to the entire world that India has scaled up its plans from Mega Watts to Giga Watts in the arena of Renewable Energy in view of its environmental sustainability. The quantum jump being mentioned is 5,000 MW to 100,000 MW (100 GW) in respect of Solar Energy and 25,000 MW to 60,000 MW (60 GW) in respect of Wind Energy by 2022.

Such an ambition is not realizable without complementary energy storage of intermittent renewables. Both the above stated renewable energies are available only for 6-8 hours/day, not matching with peak load requirements and are further subject to seasonal variations. One of the basics of Power System is that the electricity must be generated at the precise moment it is demanded. It is the ultimate “just in time” system, where long-term inventory of electricity is denied. (Electricity can only notionally be stored in Capacitors and Inductors for a short time.) It cannot be stored in significant quantities but its converted forms like chemical energy in batteries, gravitational hydro potential energy etc, are possible to be stored.

Recent Cabinet Approval on Amendments in Tariff Policy

Recently the Union Cabinet has approved the proposal of the Ministry of Power for amendments in the Tariff Policy. For the first time a holistic view of the power sector has been taken and comprehensive amendments have been made in the Tariff policy 2006. The amendments are also aimed at achieving the objectives of Ujwal DISCOM Assurance Yojana (UDAY) with the focus on following 4 E’s:

  1. Electricity for all
  2. Efficiency to ensure affordable tariffs
  3. Environment for a sustainable future
  4. Ease of doing business to attract investments and ensure financial viability

Unfortunately the 5th E i.e. Energy Storage for Intermittent Renewables has been missed out. Cost of energy storage should have been built in to the Peaking tariff. This was not expected in the present scenario when we have a common Union Minister for Power and MNRE.

Recent R&D Council Meeting of the National Wind Energy Institute under MNRE

I attended the latest (Twenty-third) meeting of R&D council of the National Institute of Wind Energy (NIWE) held at Chennai on 30.12.2015 wherein their 10-Year Vision Plan was presented.

I pointed out that the renewables like wind and solar can become 24X7 power suppliers only when the appropriate Energy Storage systems are in place and hence a thrust be given for projects in developing Energy Storage systems, for renewables.

Pumped storage is one of the most promising options for energy storage in the form of hydro potential whose assessment in India is more than 96,000 MW of which not even 6,000 MW has been harnessed so far. Almost all (>99%) of power-grid-scale energy storage in the world today is pumped-hydroelectric.

However, Pumped storage is also undergoing a conceptual transformation. Rivers and dams are no more required. Sea water can be used as pumped storage media in novel approaches and “swinging door algorithm” pumped storage becomes a big battery analog for wind farm energy storage. Even an exhausted mine can be used as lower reservoir, if you can find a small water pond at a higher elevation nearby. There are many such novel systems that would revolutionize the energy storage spectrum and need immediate focus and practical green field pilots.

It was agreed in the Committee that a new group for “Energy Storage” would be created in NIWE, reflecting it as an essential ground-breaking component in the 10-Year R&D Vision Plan.

There is no future for Wind Energy Sector (and so also the SPV) without “Energy Storage”. Its importance is more than the “Solar-PV Hybrid” which can only expand the electricity supply period in a day to an extent, not necessarily matching with the Grid demand. It may however facilitate more land space for PV.

With “Energy Storage” component, the load demand can be met much better, right from cyclic stability to daily demand pattern to even seasonal demands. Without Energy Storage component Wind Energy & SPV can never be accepted as viable options for energy supply due to their intermittent nature. The cost of energy storage system has to reflect in the peaking tariff of energy supply. Higher absorption of renewable energy round the clock on the other hand may reduce its cost of supply.

There are four basic options in Energy Storage:

  1. Mechanical→Pumped Storage (Seasonal balance), Compressed Air (Daily stability), Flywheel (cyclic stability)
  2. Chemical→Batteries, Hydrogen (Electrolysers), Fuel cells
  3. Electrical→Double Layer Capacitor, Superconducting Magnetic Coil
  4. Thermal→Heat Storage (Molten Salt), for stability in heating systems or re-conversion in to electricity

The above options may suit different sets of wind farms & SPV stations and their connecting sub-stations to supply 24×7 and more specifically as per grid demand and the environment around.

I hope, all concerned wake up to the urgent need of Energy Storage in our country!

Satyamev Jayate !!!

Best wishes and Regards,

Dr. B.S.K.Naidu

BE(Hons), M.Tech., Ph.D., CBI-Scholar, D.Engg. (Calif.), FNAE, Hon.D.WRE (USA)
Chairman Emeritus, Great Lakes, Gurgaon, NCR, New Delhi, INDIA
Former Director General (NPTI & CPRI / REL), Ex. Director (REC) / Executive Director (IREDA)

No job is small or big, the way in which you do, makes it small or big (c)

Chairman Emeritus Reconnect 17 – Mindset Issues of Electricity Sector

My dear young friends,

Once a non-technical colleague of mine in NHPC asked me an innocent question. He said “if I switch off the bulb during my lunch time, how does it help? The electricity has already been generated and traveled to my doorstep. Can it be degenerated? How does it save the resource-water or coal responsible for generation?” I realized that day that electricity is an extremely complex product being utilized by common man. Neither its technicalities nor its economics are easy to understand by the consumers and other stakeholders.

There is a notion in public mind that solar electricity is expensive. Yes, if you think of a 50 MW plant supplying to a city but if you think of a 50 KW plant supplying to a small village it breaks even with other sources like gas/diesel. And if you talk about a 50 W installation for a hut, it works out to be the cheapest version. Therefore Solar is expensive for the rich but most economical for the poor. 

As Director (Technical) REC, once I was addressing a meeting of Chairmen, SEBs. I was questioning and criticizing them for locating electrical sub-stations non-optimally. After listening to me for a while, Chairman of one of the largest Electricity Boards stood up and said “We don’t decide the location of the sub-stations. Each 33 KV sub-station is decided by the local MLA and 132 KV sub-station by the local MP”. Imagine more than Rs 60,000 Cr. is being pumped into the Indian grid system from the central Govt. under APDRP & R-APDRP programs for rectifying and re-configuring the network to reduce the ill effects of sub-stations located off the load centers.

Once I was sitting with the MD of West Bengal Power Development Corporation during evening time. Looking at the ‘Frequency Watch’ in his office, I told him how lucky he was to have frequency very close to 50 Hz. He said “Please wait for an hour or so, you will see a rising surge in this frequency as soon as NTPC’s Super Thermal Plants start pumping power with no sensitivity to grid frequency, since they have to bag Gold Medals for their high PLF. My small generators cannot withstand that high frequency and break down due to higher centrifugal forces on the LP side.” They get the Gold Medals and we incur huge losses, he said.

Once I visited the control room of Scandinavian Power Pool (100,000 MW) in Stockholm.  I observed a typical wall clock there with a single arm, hardly having moved from its zero position. On enquiry I came to know that it was showing the guilt accumulated in last 24-hours of frequency supply variation. In our country we don’t have guilt watches or “Guilt” itself. In the rural end of supply the voltage levels being alarmingly low, the agricultural pump-sets draw higher current and in the process get burnt up, incurring huge expenditure on their repairs.

What we see in India today is insensitivity towards customers/ consumers of electricity. Once we were conducting a program on “Six sigma for power distribution” in a large Power Distribution Company. At the end of the Program, head of a distribution zone shot a question. “Why six sigma in power distribution?” Though it is a quality tool by which we can analyze a pain area of our business and improve upon it to make more profit, he said. He went on further to say why should his company make more profit when Govt. regulations mandate only 16% return on investment by the company.

I was stunned. I asked him what stops him from making more profit and passing it on to the customer. “Customer was not only out of focus but was out of sight”. For instance in Delhi the two private sector companies claim to have reduced the AT&C losses (including theft) from nearly 50% to 15%. If this benefit is passed on to the customers, their energy bills are bound to reduce.

A shocking question was posed to me on another occasion after concluding a Program on “Energy Conservation” for a Power Distribution Company again. “Why should we promote energy conservation, when we are in energy supply business? Let the consumers waste energy. Every extra unit we supply, we have a profit margin in it. An interesting question emerging out of perceptional perversion and lack of values and consciousness…..!

I had to make an effort answering the above question. I said firstly there should be no worry as a hardcore businessman, as for any unit saved there is a queue waiting for new connections which is a profit making proposition. The argument fitted well in the conversant 1st orbit of intellectual logic. Secondly I asked them whether they would like to supply energy in energy surplus/ wasting area or energy starved area? I gave them an example. In Hawaii sugar industries at the receptions, one is offered sugar as well as sugar-free crystals along with the tea. Once I asked them as to why they offer ‘sugar-free’ as sugar producers, their reply was “we don’t produce sugar for sugar-surplus people”. Similarly as responsible energy producers and suppliers good businessmen should have a clear preference for energy-starved area vis-a-vis energy-surplus or energy-wasting area. This was the 2nd orbit of emotional intelligence.

Finally taking them to the 3rd orbit of social and spiritual consciousness, I said that after 10 years, even if the supply equals demand, for every unit saved there will be a saving of 1 kg of coal (conserving it for the future generations); 1 kg of CO2, 0.4 kg of ash, 6 gm of Nitrous Oxide and 1 gm of Sulphur-di-oxide (causing pollution for the present generation) !!

There is so much of hype about “Smart Grid” but no one knows where it exists in India. If every Circle/ City distribution could have just declared its peak hours and the differential tariff, displaying it on the internet and insisted for a timer in the consumers’ meters; the load curves would have flattened meeting the first and foremost obligation of a Smart Grid. What is perhaps required is implementation mindset !

Wish you all a very happy and enlightening Diwali!

Satyamev Jayate !!!

Best wishes and Regards,

Dr. B.S.K.Naidu

M.Tech., Ph.D., CBI Scholar, D.Engg.(Calif), FNAE
Hon.D.WRE (ranked amongst 30-most eminent scientists in the world)
Chairman Emeritus, Great Lakes, Gurgaon, NCR, New Delhi, INDIA
Former Director General (NPTI & CPRI / REL), Ex-Director (REC)/ Executive Director (IREDA)

No job is small or big, the way in which you do, makes it small or big (c)

My Summer Internship Experience

Summer Internship, I was told, was one of the most important part of my MBA as I would get a chance to apply the knowledge gathered and get a reality check on my progress over the first year. So, naturally, I was all excited to start my internship at Feedback Infra Services Pvt. Ltd. – a Consulting firm in Gurgaon, which provides services in varied domains extending from Energy, Transport and Hospitals to Real estate.

I am doing internship in the Energy Domain, specifically in Transmission & Distribution under able guidance of my company Guide and would like to share my first month’s experience. On the very first day, a project on “”Detailed Analysis of Privatization of Transmission & Distribution” was allotted to me. The scope of project was to carry out a detailed study of the Power Transmission & Distribution sector from the very beginning – i.e., the inception of the first Electricity Act 1910. I happen to have worked in Transmission & Distribution for almost 4 years in Reliance Power Transmission Ltd. and was expecting to work on something new during my internship. Nonetheless, I was kicked about it as I saw this as an opportunity to delve deeper into the history of one of the greatest discovery of all times – Electricity.

I was determined to prove my mettle with this study and to improve my prospects at getting better projects in the future. This was one of the numerous life lessons I learnt from my professors during my first year at Great Lakes – that in order to get something, you must first deserve it. So I worked and worked and worked hard for it. And it paid off too, as my next was a live project on “Market Assessment of EPC Companies in Transmission & Distribution” for a foreign investor.

It has been little over a month since I joined and I have got the opportunity to work and be a part of about 10 different projects out of which, two were specially assigned to me by the Associate Director of Feedback Infra. Some of the projects are tough as no data or information is readily available for analysis but that’s what has made work fun – especially making reports after analyzing different upcoming/projected programs in the power sector.

My first month here at Feedback Infra, was very challenging to say the least but there was also a lot to learn and I would like to thank my mentors at Great Lakes for providing me such a wonderful opportunity.

Vipul Tiwari

Member, Student Council
Ojas, PGPM (Energy) Class of 2014
Great Lakes Institute of Management, Gurgaon